Iranian Journal of Mathematical Sciences and Informatics Vol. 19, No. 2 (2024), pp 195-206 DOI: 10.61186/ijmsi.19.2.195

Pointwise Inner and Center Actors of a Lie Crossed Module

M. Jamshidi, F. Saeedi[∗]

Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran

> E-mail: mehdijamshidi44@yahoo.com E-mail:saeedi@mashdiau.ac.ir

ABSTRACT. Let $\mathcal L$ be a Lie crossed module and $\text{Act}_{ni}(\mathcal L)$ and $\text{Act}_z(\mathcal L)$ be the pointwise inner actor and center actor of \mathcal{L} , respectively. We will give a necessary and sufficient condition under which $\text{Act}_{pi}(\mathcal{L})$ and $\text{Act}_{z}(\mathcal{L})$ are equal.

Keywords: Pointwise Inner, Crossed Module, Center Actor.

2020 Mathematics subject classification: 17B40, 17B99.

1. INTRODUCTION

Crossed modules of groups are introduced by Whitehead [11] to study homotopy relation among groups. Lie crossed modules are also introduced and used by Lavendhomme and Rosin [8] as a sufficient coefficient of a nonabelian cohomology of T-algebras.

A crossed module $\mathcal L$ in Lie algebras is a homomorphism $d: L_1 \longrightarrow L_0$ with an action of L_0 on L_1 satisfying special conditions (see Casas [3], Casas and Ladra [4, 5] for details).

In [9], Norrie extended the definition of actor to the 2-dimensional case by giving a description of the corresponding object in the category of crossed modules of groups. The analogoue construction for the category of crossed modules of Lie algebras is given in [5].

[∗]Corresponding Author

Received 5 February 2020; Accepted 25 November 2021 ©2024 Academic Center for Education, Culture and Research TMU

Actor of crossed module of Leibniz algebras also introduced by Casas et al. in [6].

Allahyari and Saeedi in [1] and [2] introduced a chain of subcrossed modules of Act(\mathcal{L}), and showed that for two Lie crossed module \mathcal{L} and \mathcal{M} , ID^{*}Act(\mathcal{L}) ≅ ID^{*}Act(\mathcal{M}) if $\mathcal L$ and $\mathcal M$ are isoclinic. Sheikh-Mohseni et al. [10] gives a necessary and sufficient condition for $Der_c(L)$ and $Der_z(L)$ of a Lie algebra L to be equal.

In this paper, we shall introduce a new subcrossed module of $\text{Act}(\mathcal{L})$, denoted by $\text{Act}_{z}(\mathcal{L})$, and study its relationships with subcrossed modules of $\text{Act}(\mathcal{L})$, say InnAct(\mathcal{L}) and Act_{pi}(\mathcal{L}). In section 2, definitions and primary notations used for Lie crossed module and $\text{Act}(\mathcal{L})$ are presented. In section 3, $\text{Act}_z(\mathcal{L})$ is defined and some of its elementary properties are proved. In section 4, we prove the main theorem, which gives a necessary and sufficient condition for the equality of $\text{Act}_{pi}(\mathcal{L})$ and $\text{Act}_{z}(\mathcal{L})$.

2. Preliminaries on crossed modules

Definition 2.1. A Lie crossed module is a Lie homomorphism $d: L_1 \longrightarrow L_0$ together with an action of L_0 on L_1 , denoted as $(l_0, l_1) \mapsto^{l_0} l_1$ for all $l_0 \in L_0$ and $l_1 \in L_1$, such that

(1)
$$
d(^{l_0}l_1) = [l_0, d(l_1)];
$$

(2) $d^{(l_1)}l'_1 = [l_1, l'_1],$

for all $l_0 \in L_0$ and $l_1, l'_1 \in L_1$. The crossed module $\mathcal L$ is denoted by $\mathcal L$: $(L_1, L_0, d).$

The crossed module \mathcal{L}' : (L'_1, L'_0, d') is a subcrossed module of \mathcal{L} : (L_1, L_0, d) , and denoted by $\mathcal{L}' \leq \mathcal{L}$, if L'_0 and L'_1 are subalgebras of L_0 and L_1 , respectively, and d' is the restriction of d on L'_1 , and the action of L'_0 on L'_1 is induced from the action of L_0 on L_1 .

The subcrossed module \mathcal{L}' : (L'_1, L'_0, d') of \mathcal{L} : (L_1, L_0, d) is an ideal of \mathcal{L} , denoted by $\mathcal{L}' \triangleleft \mathcal{L}$, if L'_0 and L'_1 are ideals of L_0 and L_1 , respectively, and that we have ${}^{l_0}l'_1 \in L'_1$ and ${}^{l'_0}l_1 \in L'_1$ for all $l_0 \in L_0$, $l'_0 \in L'_0$, $l_1 \in L_1$, and $l'_1 \in L'_1$.

Definition 2.2. Let $\mathcal{L} : (L_1, L_0, d)$ be a Lie crossed module. The center $Z(\mathcal{L})$ of \mathcal{L} , that is an ideal of \mathcal{L} , is defined as

$$
Z(\mathcal{L}):({}^{L_0}L_1,\mathrm{st}_{L_0}(L_1)\cap Z(L_0),d_{|}),
$$

where

$$
{}^{L_0}L_1 = \left\{ l_1 \in L_1 \mid^{l_0} l_1 = 0, \ \forall \ l_0 \in L_0 \right\}
$$

and

$$
st_{L_0}(L_1) = \left\{ l_0 \in L_0 \mid^{l_0} l_1 = 0, \ \forall \ l_1 \in L_1 \right\}.
$$

and d_{\parallel} is restriction of d to ${}^{L_0}L_1$.

The crossed module $\mathcal L$ is abelian if it coincides with its center, i.e.

$$
L_1 = L_0 L_1
$$
 and $L_0 = \text{st}_{L_0}(L_1) \cap Z(L_0)$.

The derived subcrossed module of \mathcal{L} , denoted as \mathcal{L}^2 , is defined as follows:

$$
\mathcal{L}^2 : (D_{L_0}(L_1), L_0^2, d_{\parallel}),
$$

where

$$
D_{L_0}(L_1) = \langle {}^{l_0}l_1 \mid l_0 \in L_0, l_1 \in L_1 \rangle.
$$

and d_{\parallel} is restriction of d to ${}^{L_0}L_1$.

A homomorphism between two Lie crossed modules \mathcal{L} : (L_1, L_0, d) and \mathcal{L}' : (L'_1, L'_0, d') is a pair (f, g) of Lie algebra homomorphisms $f: L_1 \longrightarrow L'_1$ and $g: L_0 \longrightarrow L'_0$ satisfying

(1)
$$
d'f = gd;
$$

\n(2) $f({}^{l_0}l_1) = {}^{g(l_0)} f(l_1),$
\n(3) $d \in I$ and $d \in I$

for all $l_0 \in L_0$ and $l_1 \in L_1$.

Definition 2.3. Assume $\mathcal{L} : (L_1, L_0, d)$ is a crossed module. A derivation of $\mathcal L$ is a pair $(\psi, \phi) : \mathcal L \to \mathcal L$ satisfying the following conditions:

(1) $\psi \in \text{Der}(L_1)$, (2) $\phi \in \text{Der}(L_0)$, (3) $d\psi = \phi d$, (4) $\psi({}^{l_0}l_1) = {}^{l_0} \psi(l_1) + {}^{\phi(l_0)} (l_1),$

for all $l_0 \in L_0$ and $l_1 \in L_1$.

The set of all derivations of $\mathcal L$ is denoted by $Der(\mathcal L)$, which is a Lie algebra with bracket as in the following:

$$
[(\psi, \phi), (\psi', \phi')] = ([\psi, \psi'], [\phi, \phi']) = (\psi \psi' - \psi' \psi, \phi \phi' - \phi' \phi).
$$

Definition 2.4. Assume $\mathcal{L} : (L_1, L_0, d)$ is a Lie algebra crossed module. The a map $\delta: L_0 \to L_1$ is called crossed derivation if

$$
\delta([l_0, l'_0]) =^{l_0} \delta(l'_0) -^{l'_0} \delta(l_0)
$$

for all $l_0, l'_0 \in L_0$. The set of all crossed derivations from L_0 to L_1 is denoted by $Der(L_0, L_1)$, which turns into a Lie algebra via the following bracket:

$$
[\delta_1, \delta_2] = \delta_1 d\delta_2 - \delta_2 d\delta_1
$$

for all $\delta_1, \delta_2 \in \text{Der}(L_0, L_1)$.

Definition 2.5. To each Lie crossed module $\mathcal{L} : (L_1, L_0, d)$, there corresponds a crossed module $\text{Act}(\mathcal{L}): (\text{Der}(L_0, L_1), \text{Der}(\mathcal{L}), \Delta)$ such that

$$
\hom\Delta \mathrm{Der}(L_0, L_1)\mathrm{Der}(\mathcal{L})\delta(\delta d, d\delta)
$$

and the action of $Der(\mathcal{L})$ on $Der(L_0, L_1)$ is defined as

$$
^{(\alpha,\beta)}\delta = \alpha\delta - \delta\beta
$$

for all $(\alpha, \beta) \in \text{Der}(\mathcal{L})$ and $\delta \in \text{Der}(L_0, L_1)$, and it is called the actor of \mathcal{L} (see Casas and Ladra, [5]).

Proposition 2.6. There exists a canonical homomorphism of crossed modules as

$$
(\varepsilon, \eta): \mathcal{L} \longrightarrow \text{Act}(\mathcal{L}),
$$

where

$$
\hom{\varepsilon} L_1 \mathrm{Der}(L_0, L_1) l_1 \delta_{l_1} \quad \text{and} \quad \hom{\eta} L_0 \mathrm{Der}(\mathcal{L}) l_0(\alpha_{l_0}, \beta_{l_0}),
$$

in which $\delta_{l_1}(l_0) =^{l_0} l_1$, $\alpha_{l_0}(l_1) =^{l_0} l_1$, and $\beta_{l_0}(l'_0) = [l_0, l'_0]$ for all $l_0 \in L_0$, $l'_0 \in L_0$, and $l_1 \in L_1$.

The image of (ε, η) is an ideal of $\text{Act}(\mathcal{L})$ and it is denoted as $\text{InnAct}(\mathcal{L})$. We have

InnAct(
$$
\mathcal{L}
$$
) : ($\varepsilon(L_1), \eta(L_0), \Delta$).

On can easily see that $\ker(\varepsilon, \eta) = Z(L)$. (See allahyary and saeedi [1])

Definition 2.7. Let \mathcal{L} be a Lie crossed module. Then the pointwise inner actor of $\mathcal L$ is defined as follows:

$$
\mathrm{Act}_{pi}(\mathcal{L}): (\mathrm{Der}_{pi}(L_0,L_1),\mathrm{Der}_{pi}(\mathcal{L}),\Delta_{|}),
$$

where

$$
\text{Der}_{pi}(L_0, L_1) = \{ \delta \in \text{Der}(L_0, L_1) \mid \forall l_0 \in L_0, \exists l_1 \in L_1 : \delta(l_0) =^{l_0} l_1 \}
$$

and

$$
\mathrm{Der}_{pi}(\mathcal{L}) = \left\{ (\alpha, \beta) \in \mathrm{Der}(\mathcal{L}) \mid \begin{array}{c} \forall l_1 \in L_1, \ \exists l_0 \in L_0 : \alpha(l_1) =^{l_0} l_1, \\ \forall l_0 \in L_0, \ \exists l'_0 \in L_0 : \beta(l_0) = [l'_0, l_0] \end{array} \right\}.
$$

One can easily verify that $\text{Act}_{pi}(\mathcal{L})$ is a subcrossed module of $\text{Act}(\mathcal{L})$ and contains $\text{InnAct}(\mathcal{L})$ (see Allahyari and Saeedi [1]).

Definition 2.8. Let $\mathcal{L} : (L_1, L_0, d)$ be a Lie crossed module. Then ID^{*}Act(\mathcal{L}) is defined as

$$
\mathrm{ID}^*\mathrm{Act}(\mathcal{L}):(\mathrm{ID}^*(L_0,L_1),\mathrm{ID}^*(\mathcal{L}),\Delta|),
$$

where

$$
ID^*(L_0, L_1) = \left\{ \delta \in Der(L_0, L_1) \mid \begin{array}{l} \delta(x_0) \in D_{L_0}(L_1), \ \forall \ x_0 \in L_0, \\ \delta(x_0) = 0, \ \forall \ x_0 \in \text{st}_{L_0}(L_1) \cap Z(L_0), \end{array} \right\}
$$

and

$$
ID^*(\mathcal{L}) = \left\{ (\alpha, \beta) \in Der(\mathcal{L}) \mid \begin{array}{l} \alpha(x_1) \in D_{L_0}(L_1), \ \forall \ x_1 \in L_1, \\ \alpha(x_1) = 0, \ \forall \ x_1 \in L_0 L_1, \\ \beta(x_0) \in L_0^2, \ \forall \ x_0 \in L_0, \\ \beta(x_0) = 0, \ \forall \ x_0 \in \text{st}_{L_0}(L_1) \cap Z(L_0) \end{array} \right\}.
$$

On can easily show that ID^{*}Act(\mathcal{L}) is a subcrossed module of Act(\mathcal{L}) and contains $\text{Act}_{pi}(\mathcal{L})$ (see Allahyari and Saeedi [1]).

3. Center actor of Lie crossed modules

In this section we define subcrossed module of $\text{Act}(\mathcal{L})$ namely $\text{Act}_{z}(\mathcal{L})$ and we prove some of its elementary properties.

Definition 3.1. Let $\mathcal{L} : (L_1, L_0, d)$ be a Lie crossed module. The Act_z(\mathcal{L}) is defined as follows:

$$
\operatorname{Act}_{z}(\mathcal{L}): (\operatorname{Der}_{z}(L_0, L_1), \operatorname{Der}_{z}(\mathcal{L}), \Delta_{|}),
$$

where

$$
\text{Der}_z(L_0, L_1) = \{ \delta \in \text{Der}(L_0, L_1) \mid \delta(l_0) \in L_0 L_1, \ \forall \ l_0 \in L_0 \}
$$

and

$$
\mathrm{Der}_z(\mathcal{L}) = \left\{ (\alpha, \beta) \in \mathrm{Der}(\mathcal{L}) \mid \begin{array}{l} \alpha(l_1) \in^{L_0} L_1, \ \forall \ l_1 \in L_1, \\ \beta(l_0) \in \mathrm{st}_{L_0}(L_1) \cap Z(L_0), \ \forall \ l_0 \in L_0. \end{array} \right\}
$$

Note that Δ_{\parallel} is the restriction of Δ to $\text{Der}_{z}(L_0, L_1)$.

Proposition 3.2. Act_z(\mathcal{L}) is a subcrossed module of Act(\mathcal{L}).

Proof. We have to show that

- (1) $\text{Der}_z(L_0, L_1) \leq \text{Der}(L_0, L_1);$
- (2) $\mathrm{Der}_z(\mathcal{L}) \leq \mathrm{Der}(\mathcal{L});$
- (3) $\Delta_{|\text{Der}_z(L_0, L_1)} \subseteq \text{Der}_z(\mathcal{L}).$

(1) Assume δ, δ' are two arbitrary elements of $Der_z(L_0, L_1)$. Then

$$
\delta(x_0) \in^{L_0} L_1
$$
 and $\delta'(x_0) \in^{L_0} L_1$

for all $x_0 \in L_0$. Now since $[\delta, \delta'](x_0) = \delta d\delta'(x_0) - \delta' d\delta(x_0)$, one can easily verify that

$$
[\delta, \delta'](x_0) \in^{L_0} L_1
$$

for all $x_0 \in \mathcal{L}$. Hence $\text{Der}_z(L_0, L_1) \leq \text{Der}(L_0, L_1)$.

(2) Let (α, β) and (α', β') be two elements of $Der_z(\mathcal{L})$. Then

$$
\alpha(x_1) \in^{L_0} L_1
$$
 and $\alpha'(x_1) \in^{L_0} L_1$,
\n $\beta(x_0) \in \text{st}_{L_0}(L_1) \cap Z(L_0)$ and $\beta'(x_0) \in \text{st}_{L_0}(L_1) \cap Z(L_0)$

for all $x_0 \in L_0$ and $x_1 \in L_1$. Since

$$
[(\alpha,\beta),(\alpha',\beta')] = ([\alpha,\alpha'],[\beta,\beta']) = (\alpha\alpha'-\alpha'\alpha,\beta\beta'-\beta'\beta),
$$

one can see that

$$
(\alpha\alpha' - \alpha'\alpha)(x_1) = \alpha\alpha'(x_1) - \alpha'\alpha(x_1) \in^{L_0} L_1,
$$

$$
(\beta\beta' - \beta'\beta)(x_0) = \beta\beta'(x_0) - \beta'\beta(x_0) \in \text{st}_{L_0}(L_1) \cap Z(L_0)
$$

for all $x_0 \in L_0$ and $x_1 \in L_1$. Therefore $[(\alpha, \beta), (\alpha', \beta')] \in Der_z(\mathcal{L})$ so that $\mathrm{Der}_z(\mathcal{L}) \leqslant \mathrm{Der}(\mathcal{L}).$

(3) Assume $\delta \in \text{Der}_z(L_0, L_1)$. From the definition of Δ , we have

$$
\Delta(\delta) = (\delta d, d\delta).
$$

One can easily check that

$$
\delta d(x_1) \in^{L_0} L_1,
$$

$$
d\delta(x_0) \in \text{st}_{L_0}(L_1) \cap Z(L_0)
$$

for all $x_0 \in L_0$ and $x_1 \in L_1$. Thus $\Delta(\delta) = (\delta d, d\delta) \in Der_z(\mathcal{L})$, and so $\Delta_{|\text{Der}_z(L_0,L_1)} \subseteq \text{Der}_z(\mathcal{L})$. Therefore $\text{Act}_z(\mathcal{L}) \leq \text{Act}(\mathcal{L})$, and the proof is complete. \Box

Definition 3.3. Let $\mathcal{L} : (L_1, L_0, d)$ be a Lie crossed module and $\mathcal{M} : (M_1, M_0, d)$ be an ideal of L. Then the centralizer of M in L, denoted as $\mathcal{C}_{\mathcal{L}}(\mathcal{M})$, is defined as

$$
\mathcal{C}_{\mathcal{L}}(\mathcal{M}) : (^{M_0}L_1, C_{L_0}(M_0) \cap {\rm st}_{L_0}(M_1), d_{|}),
$$

where

$$
{}^{M_0}L_1 = \{x_1 \in L_1 \mid {}^{x_0} x_1 = 0, \ \forall \ x_0 \in M_0\},
$$

\n
$$
C_{L_0}(M_0) = \{x_0 \in L_0 \mid [x_0, y_0] = 0, \ \forall \ y_0 \in M_0\},
$$

\n
$$
st_{L_0}(M_1) = \{x_0 \in L_0 \mid {}^{x_0} x_1 = 0, \ \forall \ x_1 \in M_1\}.
$$

Let \mathcal{M} : (M_1, M_0, d_1) and \mathcal{N} : (N_1, N_0, d_1) be two ideals of the crossed module \mathcal{L} : (L_1, L_0, d) . Then the ideal $\mathcal{M} \cap \mathcal{N}$ of \mathcal{L} is defined as

$$
\mathcal{M}\cap\mathcal{N}:(M_1\cap N_1,M_0\cap N_0,d_{|}).
$$

Lemma 3.4. Let $\mathcal{L} : (L_1, L_0, d)$ be a Lie crossed module and $\mathcal{M} : (M_1, M_0, d)$ be an ideal of $\mathcal L$. Then $\mathcal M \cap \mathcal C_{\mathcal L}(\mathcal M) = Z(\mathcal M)$.

Proof. It is obvious. \Box

Lemma 3.5. Let $\mathcal{L} : (L_1, L_0, d)$ be a Lie crossed module and $\text{InnAct}(\mathcal{L}) \leq \mathcal{H} \leq$ ID^{*}Act(\mathcal{L}). Then

$$
C_{\mathrm{Act}(\mathcal{L})}(\mathcal{H})=\mathrm{Act}_z(\mathcal{L}).
$$

Proof. Assume \mathcal{H} : (H_1, H_0, Δ) . We need to show that

(1) H_0 Der(L_0, L_1) = Der_z(L_0, L_1);

(2) $C_{\text{Der}(\mathcal{L})}(H_0) \cap \text{st}_{\text{Der}(\mathcal{L})}(H_1) = \text{Der}_z(\mathcal{L}).$

(1) Let $\delta \in \text{Der}_z(L_0, L_1)$. Then $\delta(l_0) \in L_0 L_1$ for all $l_0 \in L_0$. Now if $(\alpha, \beta) \in H_0$, then we observe that

$$
({}^{\alpha,\beta})\delta(l_0) = (\alpha\delta - \delta\beta)(l_0) = \alpha(\delta(l_0)) - \delta(\beta(l_0)) = -\delta(\beta(l_0)).
$$

Since $\beta(l_0) \in L_0^2$, there exist $x_0, y_0 \in L_0$ such that $\beta(l_0) = [x_0, y_0]$. Then

$$
^{(\alpha,\beta)}\delta(l_0) = \delta([x_0,y_0]) = y_0 \delta(x_0) - x_0 \delta(y_0) = 0.
$$

Thus $\delta \in H_0$ Der (L_0, L_1) and consequently Der_z $(L_0, L_1) \subseteq H_0$ Der (L_0, L_1) .

Conversely, assume $\delta \in H_0$ Der (L_0, L_1) . Then $({\alpha, \beta}) \delta(x_0) = 0$ for all $x_0 \in L_0$ and $(\alpha, \beta) \in H_0$. Now since H contains InnAct(\mathcal{L}), we can write (α, β) = $(\alpha_{l_0}, \beta_{l_0})$ for some $l_0 \in L_0$. Then

$$
(\alpha_{l_0}, \beta_{l_0})\delta(x_0) = 0 \Rightarrow (\alpha_{l_0}\delta - \delta\beta_{l_0})(x_0) = 0,
$$

$$
\Rightarrow \alpha_{l_0}(\delta(x_0)) - \delta(\beta_{l_0}(x_0)) = 0,
$$

$$
\Rightarrow^{l_0} \delta(x_0) - \delta([l_0, x_0]) = 0,
$$

$$
\Rightarrow^{l_0} \delta(x_0) - \delta(x_0) + x_0 \delta(l_0) = 0,
$$

$$
\Rightarrow^{x_0} \delta(l_0) = 0
$$

for all $x_0, l_0 \in L_0$. Therefore $\delta \in \text{Der}_z(L_0, L_1)$ so that ${}^{H_0}\text{Der}(L_0, L_1) \subseteq$ $Der_z(L_0, L_1).$

(2) Let $(\alpha, \beta) \in Der_z(\mathcal{L})$. Then

$$
\alpha(l_1) \in^{L_0} L_1
$$
 and $\beta(l_0) \in \text{st}_{L_0}(L_1) \cap Z(L_0)$

for all $l_0 \in L_0$ and $l_1 \in L_1$. Now assume $(\alpha', \beta') \in H_0$ is any element. Then

$$
[(\alpha,\beta),(\alpha',\beta')] = ([\alpha,\alpha'],[\beta,\beta']).
$$

\n
$$
[\alpha,\alpha'](l_1) = (\alpha\alpha'-\alpha'\alpha)(l_1) = \alpha(\alpha'(l_1)) - \alpha'(\alpha(l_1)) = \alpha(\alpha'(l_1)).
$$

Since $\alpha'(l_1) \in D_{L_0}(L_1)$, there exist $x_0 \in L_0$ and $x_1 \in L_1$ such that

$$
[\alpha, \alpha'](l_1) = \alpha(\alpha'(l_1)) = \alpha({}^{x_0}x_1) = {}^{x_0} \alpha(x_1) + {}^{\beta(x_0)} x_1 = 0.
$$

Similarly, we can show that

$$
[\beta, \beta'](l_0) = (\beta \beta' - \beta' \beta)(l_0) = \beta(\beta'(l_0)) - \beta'(\beta(l_0))
$$

= $\beta([x_0, y_0]) = [\beta(x_0), y_0] + [x_0, \beta(y_0)] = 0$

for some $x_0, y_0 \in L_0$. Hence, we conclude that $[(\alpha, \beta), (\alpha', \beta')] = 0$ and so

$$
\operatorname{Der}_{z}(\mathcal{L}) \subseteq C_{\operatorname{Der}(\mathcal{L})}(H_0). \tag{3.1}
$$

Now suppose that $\delta \in H_1$. Then

$$
^{(\alpha,\beta)}\delta(x_0)=\alpha(\delta(x_0))-\delta(\beta(x_0))=\alpha(\delta(x_0)).
$$

Since $H_1 \subseteq \text{ID}^*(L_0, L_1)$, there exist elements $y_0 \in L_0$ and $y_1 \in L_1$ such that $\delta(x_0) = y_0 y_1$. Then we have

$$
^{(\alpha,\beta)}\delta(x_0)=\alpha(\delta(x_0))=\alpha(^{y_0}y_1)={^{y_0}}\ \alpha(y_1)+^{ \beta(y_0)}y_1=0.
$$

Thus

$$
\operatorname{Der}_{z}(\mathcal{L}) \subseteq \operatorname{st}_{\operatorname{Der}(\mathcal{L})}(H_1). \tag{3.2}
$$

From (3.1) and (3.2) it follows that

$$
\mathrm{Der}_z(\mathcal{L}) \subseteq C_{\mathrm{Der}(\mathcal{L})}(H_0) \cap \mathrm{st}_{\mathrm{Der}(\mathcal{L})}(H_1).
$$

Conversely, assume $(\alpha, \beta) \in C_{\text{Der}(\mathcal{L})}(H_0) \cap \text{st}_{\text{Der}(\mathcal{L})}(H_1)$. Then

$$
^{(\alpha,\beta)}\delta = 0 \text{ and } [(\alpha,\beta),(\alpha',\beta')] = 0
$$

for all $\delta \in H_1$ and $(\alpha', \beta') \in H_0$. Now since Inn $\text{Act}(\mathcal{L}) \subseteq \mathcal{H}$, we can write $\delta = \delta_{l_1}$ for some $l_1 \in L_1$. Then

$$
(\alpha,\beta)\delta_{l_1}(x_0) = 0 \Rightarrow \alpha(\delta_{l_1}(x_0)) - \delta_{l_1}(\beta(x_0)) = 0,
$$

$$
\Rightarrow \alpha({}^{x_0}l_1) - ^{\beta(x_0)}l_1 = 0,
$$

$$
\Rightarrow^{x_0} \alpha(l_1) + ^{\beta(x_0)}l_1 - ^{\beta(x_0)}l_1 = 0,
$$

$$
\Rightarrow^{x_0} \alpha(l_1) = 0
$$

for all $x_0 \in L_0$ and $l_1 \in L_1$. This shows that

$$
\alpha(l_1) \in^{L_0} L_1 \tag{3.3}
$$

for all $l_1 \in L_1$.

On the other hand, for all $l_0 \in L_0$, we have

$$
[(\alpha, \beta), (\alpha_{l_0}, \beta_{l_0})] = 0 \Rightarrow [\alpha, \alpha_{l_0}](x_1) = 0,
$$

\n
$$
\Rightarrow \alpha(\alpha_{l_0}(x_1) - \alpha_{l_0}(\alpha(x_1)) = 0,
$$

\n
$$
\Rightarrow \alpha({}^{\{0\}} x_1) - {}^{\{0\}} \alpha(x_1) = {}^{\{0\}} \alpha(x_1) + {}^{\beta(\{0\}} x_1 - {}^{\{0\}} \alpha(x_1) = {}^{\beta(\{0\}} x_1 = 0
$$

for all $x_1 \in L_1$, which implies that $\beta(l_0) \in \text{st}_{L_0}(L_1)$. Also

$$
[\beta, \beta_{l_0}] = 0 \Rightarrow [\beta, \beta_{l_0}](x_0) = 0,\n\Rightarrow \beta(\beta_{l_0}(x_0)) - \beta_{l_0}(\beta(x_0)) = 0,\n\Rightarrow \beta([l_0, x_0]) - [l_0, \beta(x_0)] = 0,\n\Rightarrow [\beta(l_0), x_0] + [l_0, \beta(x_0)] - [l_0, \beta(x_0)] = [\beta(l_0), x_0] = 0
$$

for all $x_0 \in L_0$, which implies that $\beta(l_0) \in Z(L_0)$. Hence

$$
\beta(l_0) \in \mathrm{st}_{L_0}(L_1) \cap Z(L_0). \tag{3.4}
$$

From (3.3) and (3.4), we get $(\alpha, \beta) \in Der_z(\mathcal{L})$.

Corollary 3.6. Let \mathcal{L} : (L_1, L_0, d) be a Lie crossed module and InnAct(\mathcal{L}) \leq $\mathcal{H} \leqslant \mathrm{ID}^* \mathrm{Act}(\mathcal{L})$. Then

$$
\mathcal{H} \cap \text{Act}_{z}(\mathcal{L}) = Z(\mathcal{H}).
$$

Proof. The result follows by Lemmas 3.4 and 3.5. \Box

4. Main theorem

We are now ready to prove our main theorem, which gives a necessary and sufficient condition for $\text{Act}_{pi}(\mathcal{L})$ and $\text{Act}_{z}(\mathcal{L})$ to be equal. To this end, we need some preliminary lemmas.

Lemma 4.1. Let \mathcal{L} : (L_1, L_0, d) be a Lie crossed module and $\text{Act}_{pi}(\mathcal{L})$ = $\text{Act}_{z}(\mathcal{L})$. Then Inn $\text{Act}(\mathcal{L})$ is abelian.

Proof. The result follows from the fact that $\text{InnAct}(\mathcal{L}) \subseteq \text{Act}_{pi}(\mathcal{L})$ and $\text{Act}_{pi}(\mathcal{L}) =$ $\mathrm{Act}_z(\mathcal{L}).$

Definition 4.2. Let $\mathcal{L} : (L_1, L_0, d_{\mathcal{L}})$ and $\mathcal{M} : (M_1, M_0, d_{\mathcal{M}})$ be two Lie crossed modules. The set of all linear transformations from $\mathcal L$ to $\mathcal M$ is denoted by $T(\mathcal{L},\mathcal{M})$ and it is defined as

$$
T(\mathcal{L}, \mathcal{M}) : (T(L_0, M_1), (T(L_1, M_1), T(L_0, M_0))),
$$

where for example $T(L_0, M_1)$ is the vector space of linear transformations from L_0 to M_1 .

Definition 4.3. Let $\mathcal{L} : (L_1, L_0, d)$ be a Lie crossed module. The dimension of $\mathcal L$ is defined as

$$
\dim \mathcal{L} = (\dim L_1, \dim L_0).
$$

Lemma 4.4. Let $\mathcal{L} : (L_1, L_0, d)$ be a Lie crossed module. Then we have the following vector space isomorphisms:

- (1) $\operatorname{Der}_z(L_0, L_1) \cong T(L_0/L_0^{2}, L_0 L_1);$
- (2) $\text{Der}_z(\mathcal{L}) \cong (T(L_1/D_{L_0}(L_1), L_0 L_1), T(L_0/L_0^2, \text{st}_{L_0}(L_1) \cap Z(L_0)).$

Proof. (1) For each $\delta \in \text{Der}_z(L_0, L_1)$, we can define the map $\psi_{\delta}: L_0/L_0^2 \longrightarrow^{L_0}$ L_1 by $\psi_\delta(l_0 + \mathcal{L}_0^2) = \delta(l_0)$ for all $l_0 \in L_0$. Clearly, ψ_δ is well-defined. Also, it is easy to see that the map

$$
\psi : \text{Der}_z(L_0, L_1) \longrightarrow T\left(\frac{L_0}{L_0^2}, L_0 L_1\right)
$$

define by $\psi(\delta) = \psi_{\delta}$ is an one-to-one and onto linear transformation. Thus

$$
Der_z(L_0, L_1) \cong T\left(\frac{L_0}{L_0^2}, L_0 L_1\right).
$$

(2) For each $(\alpha, \beta) \in Der_z(\mathcal{L})$, we may define the maps $\phi_\alpha: L_1/D_{L_0}(L_1) \longrightarrow^{L_0}$ L₁ and $\phi_{\beta}: L_0/L_0^2 \longrightarrow \text{st}_{L_0}(L_1) \cap Z(L_0)$ by $\phi_{\alpha}(l_1 + D_{L_0}(L_1)) = \alpha(l_1)$ and $\psi_{\beta}(l_0 + L_0^2) = \beta(l_0)$, respectively. One can easily check that, the maps ϕ_{α} and ϕ_{β} are well-defined linear transformations. Now, it is easy to show that the map

hom
$$
\phi
$$
Der_z(\mathcal{L}) $\left(T\left(\frac{L_1}{D_{L_0}(L_1)}, {}^{L_0}L_1\right), T\left(\frac{L_0}{L_0^2}, \text{st}_{L_0}(L_1) \cap Z(L_0)\right)\right) (\alpha, \beta) (\phi_\alpha, \phi_\beta)$

is a one-to-one and onto linear transformation. Thus

$$
\mathrm{Der}_z(\mathcal{L}) \cong \left(T\left(\frac{L_1}{D_{L_0}(L_1)}, {}^{L_0}L_1\right), T\left(\frac{L_0}{L_0^2}, \mathrm{st}_{L_0}(L_1) \cap Z(L_0)\right) \right),
$$

as required \Box

Corollary 4.5. We have

$$
\dim \operatorname{Act}_{z}(\mathcal{L}) = \left(\dim T \left(\frac{L_0}{L_0^2} L_0 L_1 \right), \right. \n\dim \left(T \left(\frac{L_1}{D_{L_0}(L_1)}, L_0 L_1 \right), T \left(\frac{L_0}{L_0^2}, \operatorname{st}_{L_0}(L_1) \cap Z(L_0) \right) \right) \right).
$$

Theorem 4.6. Let $\mathcal{L} : (L_1, L_0, d)$ be a nonabelian Lie crossed module of finite dimension with $Z(\mathcal{L}) \neq 0$. Then $\text{Act}_z(\mathcal{L}) = \text{Act}_{pi}(\mathcal{L})$ if and only if $Z(\mathcal{L}) = \mathcal{L}^2$ and

$$
\dim \operatorname{Act}_{pi}(\mathcal{L}) = \left(\dim T \left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1) \right), \right.\n\left. \dim \left(T \left(\frac{L_1}{L_0 L_1}, D_{L_0}(L_1) \right), T \left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2 \right) \right) \right).
$$

Proof. First assume that $\text{Act}_z(\mathcal{L}) = \text{Act}_{pi}(\mathcal{L})$. Since $\text{InnAct}(\mathcal{L}) \subseteq \text{Act}_{pi}(\mathcal{L}),$ we get $\mathcal{L}^2 \subseteq Z(\mathcal{L})$. For each $\delta \in \text{Der}_{pi}(L_0, L_1)$, we define the well-defined linear transformation $\psi_{\delta}: L_0/{\rm st}_{L_0}(L_1) \cap Z(L_0) \longrightarrow D_{L_0}(L_1)$ by $\psi_{\delta}(x_0 + {\rm st}_{L_0}(L_1) \cap Z(L_1))$ $Z(L_0) = \delta(x_0)$. One can easily check that the map

$$
\psi : \mathrm{Der}_{pi}(L_0, L_1) \longrightarrow T\left(\frac{L_0}{\mathrm{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1)\right)
$$

define by $\psi(\delta) = \psi_{\delta}$ is a one-to-one and onto linear transformation. Thus

$$
\dim \operatorname{Der}_{pi}(L_0, L_1) = \dim T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1)\right). \tag{4.1}
$$

Also, for each $(\alpha, \beta) \in \text{Der}_{pi}(\mathcal{L})$, the maps $\phi_{\alpha}: L_1/^{L_0}L_1 \longrightarrow D_{L_0}(L_1)$ and $\phi_{\beta}: L_0/\mathrm{st}_{L_0}(L_1) \cap Z(L_0) \longrightarrow L_0^2$ defined by $\phi_{\alpha}(x_1 + ^{L_0}L_1) = \alpha(x_1)$ and $\phi_{\beta}(x_0 +$ $\text{st}_{L_0}(L_1) \cap Z(L_0) = \beta(x_0)$, respectively, are well-defined linear transformations. One can easily see that

$$
\phi: \mathrm{Der}_{pi}(\mathcal{L}) \longrightarrow \left(T\left(\frac{L_1}{L_0 L_1}, D_{L_0}(L_1)\right), T\left(\frac{L_0}{\mathrm{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2\right)\right)
$$

given by $\phi(\alpha, \beta) = (\phi_\alpha, \phi_\beta)$ is a one-to-one and onto linear transformation. Thus

$$
\dim \operatorname{Der}_{pi}(\mathcal{L}) = \dim \left(T\left(\frac{L_1}{L_0 L_1}, D_{L_0}(L_1) \right), T\left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2 \right) \right). \tag{4.2}
$$

From (4.1) and (4.2) , it follows that

$$
\dim \text{Act}_{pi}(\mathcal{L}) = \left(\dim T \left(\frac{L_0}{\text{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1) \right), \right. \n\dim \left(T \left(\frac{L_1}{L_0 L_1}, D_{L_0}(L_1) \right), T \left(\frac{L_0}{\text{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2 \right) \right) \right).
$$

Suppose on the contrary that $\mathcal{L}^2 \subset Z(\mathcal{L})$. Then

$$
\dim T\left(\frac{\mathcal{L}}{Z(\mathcal{L})},\mathcal{L}^2\right) < \dim T\left(\frac{\mathcal{L}}{\mathcal{L}^2},Z(\mathcal{L})\right),\,
$$

which contradicts the equality of $\text{Act}_{pi}(\mathcal{L})$ and $\text{Act}_{z}(\mathcal{L})$. Therefore $\mathcal{L}^2 = Z(\mathcal{L})$. Conversely, assume that $\mathcal{L}^2 = Z(\mathcal{L})$ and

$$
\dim \operatorname{Act}_{pi}(\mathcal{L}) = \left(\dim T \left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1) \right), \right.\n\left. \dim \left(T \left(\frac{L_1}{L_0 L_1}, D_{L_0}(L_1) \right), T \left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, L_0^2 \right) \right) \right).
$$

Since $\mathcal{L}^2 \subseteq Z(\mathcal{L})$, we have

$$
\text{Act}_{pi}(\mathcal{L}) \leq \text{Act}_{z}(\mathcal{L}).\tag{4.3}
$$

On the other hand, we have

$$
\dim \operatorname{Der}_z(L_0, L_1) = \dim T\left(\frac{L_0}{L_0^2}, L_0 L_1\right)
$$

=
$$
\dim \left(\frac{L_0}{\operatorname{st}_{L_0}(L_1) \cap Z(L_0)}, D_{L_0}(L_1)\right)
$$

=
$$
\dim \operatorname{Der}_{pi}(L_0, L_1) \tag{4.4}
$$

and

$$
\dim \operatorname{Der}_{z}(\mathcal{L}) = \dim T\left(\frac{L_{1}}{L_{0}L_{1}}, D_{L_{0}}(L_{1})\right), T\left(\frac{L_{0}}{L_{0}^{2}}, \operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0})\right)
$$

$$
= \dim \left(T\left(\frac{L_{1}}{L_{0}L_{1}}, D_{L_{0}}(L_{1})\right), T\left(\frac{L_{0}}{\operatorname{st}_{L_{0}}(L_{1}) \cap Z(L_{0})}, L_{0}^{2}\right)\right)
$$

$$
= \dim \operatorname{Der}_{pi}(\mathcal{L}) \tag{4.5}
$$

From (4.4) and (4.5), we conclude that dim $\text{Act}_z(\mathcal{L}) = \dim \text{Act}_{pi}(\mathcal{L})$. Since $\text{Act}_{pi}(\mathcal{L}) \leq \text{Act}_{z}(\mathcal{L})$ by (4.3), it follows that $\text{Act}_{z}(\mathcal{L}) = \text{Act}_{pi}(\mathcal{L})$. The proof is completed. $\hfill \square$

ACKNOWLEDGMENTS

We thank the two referees for careful readings of the manuscript and for a number of constructive corrections and suggestions.

REFERENCES

- 1. A. Allahyari, F. Saeedi, Some Properties of Isoclinism of Lie Algebra Crossed Module, Asian–Eur. J. Math., 13(3), (2020), 2050055 (14 pages).
- 2. A. Allahyari, F. Saeedi, On Nilpotency of Outer Pointwise Inner Actor of the Lie Algebra Crossed Modules, Journal of Mathematical Extension, 14(1), (2020), 19–40.
- 3. J. M. Casas, Invariants de Modulos Cruzados en Algebras de Lie, Ph.D. Thesis, Universty of Santiago, 1991.

206 M. Jamshidi, F. Saeedi

- 4. J. M. Casas, M. Ladra, Perfect Crossed Modules in Lie Algebras, Comm. Algebra, 23, (1995), 1625–1644.
- 5. J. M. Casas, M. Ladra, The Actor of a Crossed Module in Lie Algebra, Comm. Algebra, 26, (1998), 2065–2089.
- 6. J. M.Casas, R. Fernandez-Casado, X. Garcia-Martinez, E. Khmaladze, Actor of a Crossed Module of Leibniz Algebras, Theory Appl. Categ., 33, (2018), 23–42.
- 7. B. Edalatzadeh, Capability of Crossed Modules of Lie Algebras, Comm. Algebra, 42, (2014), 3366–3380.
- 8. R. Lavendhomme, J. R. Roisin, Cohomologie Non Abelienne de Structures Algebriques, J. Algebra, 67, (1980), 385–414.
- 9. K. Norrie, Actions and Automorphisms of Crossed Modules, Bull. Soc. Math. France, 118(2), (1990), 129–146.
- 10. S. Sheikh-Mohseni, F. Saeedi, M. Badrkhani-Asl, On Special Subalgebras of Derivations of Lie Algebras, Asian-European J. Math., 8(2), (2015), 1550032 (12 pages).
- 11. J. H. C. Whitehead, Combinatorial Homotopy II, Bull. Amer. Math. Soc., 55, (1949), 453–496.